

The Application of Analytical Techniques in Art Conservation

Professor Henry DePhillips and Sarah Talcott '17

Department of Chemistry, Trinity College, 300 Summit Street, Hartford, CT 06106

Introduction

- Art conservators are able to recreate and repair original works as well as determine if a work is fraudulent through analysis of a paintings materials.
- •Direct Analysis in Real Time-Time of Flight Mass Spectrometry (DART-TOF MS), and Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) can be used to determine a material's identity in the field of art conservation.
- This study explores the use of DART-TOF MS in following the changes in masses as a function of time on aged binders.
- •Linseed Oil is a common pigment binder used either alone or in combination with a resin to make paint. Linseed Oil originates from dried flax seeds (Linum usitatissimum).
- •Samples of Linseed Oil were analyzed in 24-hour intervals after being aged using various methods.
- •In order to test whether the data discovered in the aged binder experiments may be applied to paint binders, paint was made using a dry Cobalt Blue pigment (CoO•Al₂O₃) and Linseed Oil.
- A commercial Cobalt Blue Oil Color was purchased for comparison purposes.
- •The prepared and purchased paints were analyzed by the use of DART-TOF MS to determine the identity of the binder and by the use of SEM-EDS to determine their pigment identity.
- A library of elemental compositions of forty-eight 19th century pigments obtained from The Wadsworth Atheneum Conservation Library was created using SEM-EDS.
- •The library was used to determine the pigment composition of the prepared and purchased paint.

Experimental Methods

Varnish and Binder Changes Over Time Varnish or binder is smeared on glass slides

A thickness of 5mills is achieved using a coverslip Slide is placed on a hot plate (80°C) for artificial

Paint Preparation

Dry Cobalt Blue Pigment + Binder (Linseed Oil)

Measurements: SEM-EDS Scanning Electron Microscope Using Energy Dispersive Spectroscopy

Measurements: DART-TOF MS Direct Analysis in Real Time using Time of Flight Mass Spectrometry

Comparison EDS Spectrum of Cobalt Blue

Research Goals

Summary of Results

- Construct Libraries of Resin Varnishes and Pigment Compositions to Help Art Conservators Identify Pigments, Binders and Varnishes in Easel Paintings
- To Identify the Resin and Binder in a Paint Sample Using DART-TOF MS

Top Linseed Oil aged 254hrs

Bottom Linseed Oil Ohrs

Top Linseed Oil aged 254hrs

Top Linseed Oil aged 254hrs

Bottom Prepared Linseed Oil Cobalt Blue Paint aged 287hrs

Bottom Commercial Linseed Oil Cobalt Blue Paint aged 281hrs

- To Determine the Pigment Composition of Prepared and Commercial Paints Using SEM-EDS
- To Mirror Part of the Process Art Conservators Use in Determining the Materials of an Easel Painting

Table 1: 19th Century Blue Pigment Compositions determine by SEM-EDS compared with Pigment Compositions in Paint Chemical Composition | Major Elements | Minor Elements* **Pigment or Paint** BaMnO₄•BaSO₄ Manganese Blue Ba, S Mn Sn, Mg, Co Al, Zn Cerulean Blue $CoO \cdot n(SnO_2)$ Si, Cl, Ti Phthalo Blue Copper porphyrin Cu, Ca Milori Blue $Fe_4[Fe(CN)_6]_3$ Fe, N Na, S, P (Prussian Blue) **Cobalt Blue** CoAl₂O₄ Si, S, Al, Na K, Cl, Mg $Na_{6-8}Al_6Si_6O_{24}S_{2-4}$ Ultramarine Green Commercial Cobalt Blue **Hue** Linseed Oil Paint Na, Al Ca, Ba, Si, S after 93hrs Δ exposure at 80°C Prepared Cobalt Blue Linseed Oil Paint after

* Minor Elements include all elements reported as less than 10 wt. % Elements reported in order of decreasing wt. %

Linseed Oil - 878 amu Oleic Acid - 282.46 amu Linoleic Acid - 280.45 amu α -linolenic Acid – 278.43 amu

98hrs Δ exposure at 80°C

Conclusions

- Established a procedure that allows identification of resin varnishes and binders in paint. (DART-TOF MS)
- Established a procedure that allows pigment composition identification in raw pigments and paints.
- Obtained information about resin varnishes, binders, and pigment compositions and created libraries of reference material for Art Conservators.

References

- •Dietemann, P., Higgitt, C., Kaolin, M., Edelmann, M. J., Knochenmuss, R., & Zenobi, R. (2009). Aging and yellowing of triterpenoid resin varnishes Influence of aging conditions and resin composition. Journal of Cultural Heritage, 10(1), 30-40.
- •Doelen, G. A., Berg, K. J., & Boon, J. J. (1998). Comparative chromatographic and mass-spectrometric studies of triterpenoid varnishes: fresh material and aged samples from paintings. Studies in Conservation, 43(4), 249-264.
- •Rist, C. (1999, April 1). How to Heal a Masterpiece. Discover, 2. Retrieved May 22, 2014, from http://discovermagazine.com/1999/apr/masterpiece

Acknowledgments

I would sincerely like to acknowledge:

- Alison Draper and the ISP Program for giving the opportunity to rising Sophomores to participate in Summer Research.
- Trinity College Department of Chemistry for use of their facilities and equipment.
- The Conservation Laboratory at the Wadsworth Atheneum for supplying us with forty-eight 19th Century pigments.