Holy Ship! The Inadvertent Discovery of the Oldest Maryland-built Shipwreck

Nichole Doub and Francis Lukezic
Maryland Archaeological Conservation Laboratory
Jefferson Patterson Park and Museum
St. Leonard, Maryland

Discovery! In early April 2015, Maryland State Highways (SHA) were conducting bridge construction work on a section of highway crossing the Nanticoke River. A large boulder with supplies attempted to navigate the fast flowing water in the river and accidentally struck a wood ship hull piling, sending debris into the river. As the Nanticoke is a heavily trafficked waterway, the Coast Guard ordered heavy removal of the debris. Divers worked with difficulty in the black water to find the partially submerged timbers. After attaching a particularly large wood fragment to the crane’s sling, the operators were surprised to pull out a 30+ foot section of keelson with frames still attached. The project escalated quickly, the SHA archaeologists were contacted, and all efforts were made to recover as many timbers as possible before the remains of a historic shipwreck floated out into the Chesapeake Bay.

Transportation: The Maryland Archaeological Conservation Laboratory (MAC Lab) was contacted as soon as the SHA archaeologists understood the size and scope of the recovery now underway. The MAC lab is a State laboratory building, specifically designed with the consolidation of shipwrecks and oversized collections in mind. After the discovery, the timbers were loaded onto trucks and made their way to the MAC Lab for temporary care and storage. It was essential to provide a stable and accessible environment for all the timbers as research and information recovery would be necessary to determine if this is a site worth preserving and to what degree. At the time of this presentation, one year after the initial recovery, there is still much uncertainty. Should preservation stop at the site report? Will there be selective sampling for conservation? Will the entirety of the wreck be conserved and curated? How should the user sampling information be used? Where will the information go? And how will any nonzero weight be disposed? How much does public interest weigh in on the decision process? Throughout the decision making process, MAC Lab conservators have been providing advice to all invested parties and disseminating information between researchers while seeking to the daily maintenance of the materials. At archaeological projects depend on collaboration between specialists and, in this case, conservation too become the bottleneck to the process.

Documentation and Research: Working in collaboration with a Cultural Resource Management firm familiar with maritime history and archaeology, each timber underwent a rigorous recording process that included multi-planner scale drawings and laser-scanning. Maritime archaeologists from annul State and Federal agencies were consulted as to the type and construction of the ship. Throughout this multi-week assessment, it will be the role of consultants to ensure that the timbers remained in a dry, cool, and wet environment, while also providing access to all interested researchers and facilitating their various needs and requirements.

Temporary Stabilization: Due to the unplanned nature of this project, all personnel, financial, and physical resources were cobbled together on very short notice. While various researchers required access to the timbers, a staging area with sprinklers and layers of plastic were used to provide protection to the ship remains. However, during the processing of the data acquired and prior to any long-term decision making, a more robust system of stabilization was required. With no staff on hand, limited financial resources, and limited by State procurement policies, it was decided to purchase a large amount of pipes, PVC and cinder blocks and construct a fixed structure for the timbers. The timbers were placed in the pool, or tank, and submerged in water. The large volume of water prevented large fluctuations in temperature. A custom cover and swimming pool protected by a carport. The ship timbers were placed in the pool, or tank, and submerged in water. The large volume of water prevented large fluctuations in temperature. A custom cover and swimming pool protected by a carport. The timbers were placed in the pool, or tank, and submerged in water. The large volume of water prevented large fluctuations in temperature. A custom cover and swimming pool protected by a carport. The timbers were placed in the pool, or tank, and submerged in water. The large volume of water prevented large fluctuations in temperature.

Dendrochronology: MAC lab conservators worked closely with dendrochronologists to determine the best timbers and locations to take samples. It is necessary to balance the need for good sample sites, where the sap wood is still intact amongst the degraded fragments, while preserving diagnostic fragments and features that may impact the work of the archaeologists. The results of the dendrochronology analysis indicate that the ship was constructed sometime after 1743 and the white oak was harvested from the eastern forests of the Chesapeake Bay south of Antioch. This information, together with the study of the ship’s construction elements, suggests that this vessel is the oldest known locally built shipwreck in Maryland.

Future Plans: Most archaeological projects begin after months or years of planning to include recovery strategies, mitigation, conservation planning, curatorial assessments, etcetera. This accidental recovery project was fortunate to fall into the remit of Maryland’s strong State Historic Preservation Office, which allowed for access to many resources at short notice. However, before long-term decisions can be made, a thorough study must be required to determine if this is a site worth preserving and to what degree. As the time of this presentation, more than a year after the initial recovery, there is still much uncertainty. Should preservation stop at the site report? Will there be selective sampling for conservation? Will the entirety of the wreck be conserved and curated? How should the user sampling information be used? Where will the information go? And how will any nonzero weight be disposed? How much does public interest weigh in on the decision process? Throughout the decision making process, MAC Lab conservators have been providing advice to all invested parties and disseminating information between researchers while seeking to the daily maintenance of the remains.

Acknowledgments: We would like to thank Mark Thompson and Patricia Sanford at Jefferson Patterson Park and Museum, Tony Nowak and Beth Code in the Maryland Department of Planning/ Maryland Historical Trust; John Schabold at Maryland State Highways (SHA); Michael Worthington at the Oxford Tree Ring Laboratory; and Jeff Knight at USDA.

Laser scanning the ship timbers
Dendrochronology: MAC lab conservators worked closely with dendrochronologists to determine the best timbers and locations to take samples. It is necessary to balance the need for good sample sites, where the sap wood is still intact amongst the degraded fragments, while preserving diagnostic fragments and features that may impact the work of the archaeologists. The results of the dendrochronology analysis indicate that the ship was constructed sometime after 1743 and the white oak was harvested from the eastern forests of the Chesapeake Bay south of Antioch. This information, together with the study of the ship’s construction elements, suggests that this vessel is the oldest known locally built shipwreck in Maryland.

Temporary Stabilization: Due to the unplanned nature of this project, all personnel, financial, and physical resources were cobbled together on very short notice. While various researchers required access to the timbers, a staging area with sprinklers and layers of plastic were used to provide protection to the ship remains. However, during the processing of the data acquired and prior to any long-term decision making, a more robust system of stabilization was required. With no staff on hand, limited financial resources, and limited by State procurement policies, it was decided to purchase a large amount of pipes, PVC and cinder blocks and construct a fixed structure for the timbers. The timbers were placed in the pool, or tank, and submerged in water. The large volume of water prevented large fluctuations in temperature. A custom cover and swimming pool protected by a carport. The ship timbers were placed in the pool, or tank, and submerged in water. The large volume of water prevented large fluctuations in temperature.