Structure & Condition

Both paintings are executed on parchment supported by a bovine source, as verified by peptide mass fingerprinting analysis of tiny samples removed from the edge of each painting. Parchment has a smooth and dense surface that allows for natural expansion and contraction. For both paintings, a softwood strainer is utilized, which shows a smooth, even texture. The strainer is tacked to the side of the strainer and fastened with Bulldog clips. A rubber band tied to the bulldog clip allows for proper tension during the drying process without breaking tension during the extended drying periods. While effective, the tape is not reusable and can be difficult to remove. Using self-adhesive linen tape can be a consideration.

Humidification

For both treatments, a humidification package consisting of polyester film, blotter, and gauze was used. The polyester film is placed between the parchment and the gauze to allow for proper tension during the drying process. The gauze is tacked to the side of the strainer and fastened with Bulldog clips. A rubber band tied to the bulldog clip allows for proper tension during the drying process without breaking tension during the extended drying periods. While effective, the tape is not reusable and can be difficult to remove. Using self-adhesive linen tape can be a consideration.

In Method A, the relatively small treatment area was successfully humidified using several applications of blotting lightly dampened with just deionized water. In Method B, the first four rounds of humidification used blotter dampened with deionized water. The last two rounds used blotter dampened with 8% and then 9% agave isopropanol (Wood 2003). After each sequence of the humidification and drying processes, there was a reduction in the planar distortion; however, the most significant reduction was achieved using blotter lightly dampened with isopropanol.

Discussion & Conclusion

In Method B, the first four rounds of humidification used blotter dampened with deionized water. The last two rounds used blotter dampened with 8% and then 9% agave isopropanol (Wood 2003). After each sequence of the humidification and drying processes, there was a reduction in the planar distortion; however, the most significant reduction was achieved using blotter lightly dampened with asopropanol.

Acknowledgments

We would like to express our sincere gratitude to the Samuel H. Kress Foundation for supporting the graduate fellowship in paper conservation at the YCBA. We also deeply appreciate the generous contributions made by our friends and colleagues Katherine Bahar, Amanda Brown, Julia Fry, Jessica Hunter, and Beth Miller.